X


[ Pobierz całość w formacie PDF ]
Relativity: The Special and General Theory
Albert Einstein
Relativity: The Special and General Theory
Albert Einstein
Relativity
The Special and General Theory
Written: 1916 (this revised edition: 1924)
Source: Relativity: The Special and General Theory © 1920
Publisher: Methuen & Co Ltd
First Published: December, 1916
Translated: Robert W. Lawson (Authorised translation)
Transcription/Markup:
Convertion to PDF: Sjoerd Langkemper
Offline Version: Einstein Reference Archive (marxists.org) 1999
Part I: The Special Theory of Relativity
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
Part II: The General Theory of Relativity
18.
19.
20.
21.
1
 Relativity: The Special and General Theory
22.
23.
24.
25.
26.
27.
28.
29.
Part III: Considerations on the Universe as a Whole
30.
31.
32.
Appendices:
01.
02.
03.
04.
05. Relativity and the Problem of Space
Note: The fifth appendix was added by Einstein at the time of the fifteenth re−printing of this book;
and as a result is still under copyright restrictions so cannot be added without the permission of the
publisher.
2
Relativity: The Special and General Theory
Albert Einstein
Relativity: The Special and General Theory
Preface
(December, 1916)
The present book is intended, as far as possible, to give an exact insight into the theory of
Relativity to those readers who, from a general scientific and philosophical point of view, are
interested in the theory, but who are not conversant with the mathematical apparatus of theoretical
physics. The work presumes a standard of education corresponding to that of a university
matriculation examination, and, despite the shortness of the book, a fair amount of patience and
force of will on the part of the reader. The author has spared himself no pains in his endeavour to
present the main ideas in the simplest and most intelligible form, and on the whole, in the sequence
and connection in which they actually originated. In the interest of clearness, it appeared to me
inevitable that I should repeat myself frequently, without paying the slightest attention to the
elegance of the presentation. I adhered scrupulously to the precept of that brilliant theoretical
physicist L. Boltzmann, according to whom matters of elegance ought to be left to the tailor and to
the cobbler. I make no pretence of having withheld from the reader difficulties which are inherent to
the subject. On the other hand, I have purposely treated the empirical physical foundations of the
theory in a "step−motherly" fashion, so that readers unfamiliar with physics may not feel like the
wanderer who was unable to see the forest for the trees. May the book bring some one a few
happy hours of suggestive thought!
December, 1916
A. EINSTEIN
Next:
3
 Relativity: The Special and General Theory
Albert Einstein: Relativity
Part I: The Special Theory of Relativity
Part I
The Special Theory of Relativity
Physical Meaning of Geometrical Propositions
In your schooldays most of you who read this book made acquaintance with the noble building of
Euclid's geometry, and you remember — perhaps with more respect than love — the magnificent
structure, on the lofty staircase of which you were chased about for uncounted hours by
conscientious teachers. By reason of our past experience, you would certainly regard everyone
with disdain who should pronounce even the most out−of−the−way proposition of this science to be
untrue. But perhaps this feeling of proud certainty would leave you immediately if some one were to
ask you: "What, then, do you mean by the assertion that these propositions are true?" Let us
proceed to give this question a little consideration.
Geometry sets out form certain conceptions such as "plane," "point," and "straight line," with which
we are able to associate more or less definite ideas, and from certain simple propositions (axioms)
which, in virtue of these ideas, we are inclined to accept as "true." Then, on the basis of a logical
process, the justification of which we feel ourselves compelled to admit, all remaining propositions
are shown to follow from those axioms,
i.e.
they are proven. A proposition is then correct ("true")
when it has been derived in the recognised manner from the axioms. The question of "truth" of the
individual geometrical propositions is thus reduced to one of the "truth" of the axioms. Now it has
long been known that the last question is not only unanswerable by the methods of geometry, but
that it is in itself entirely without meaning. We cannot ask whether it is true that only one straight
line goes through two points. We can only say that Euclidean geometry deals with things called
"straight lines," to each of which is ascribed the property of being uniquely determined by two
points situated on it. The concept "true" does not tally with the assertions of pure geometry,
because by the word "true" we are eventually in the habit of designating always the
correspondence with a "real" object; geometry, however, is not concerned with the relation of the
ideas involved in it to objects of experience, but only with the logical connection of these ideas
among themselves.
It is not difficult to understand why, in spite of this, we feel constrained to call the propositions of
geometry "true." Geometrical ideas correspond to more or less exact objects in nature, and these
last are undoubtedly the exclusive cause of the genesis of those ideas. Geometry ought to refrain
from such a course, in order to give to its structure the largest possible logical unity. The practice,
for example, of seeing in a "distance" two marked positions on a practically rigid body is something
which is lodged deeply in our habit of thought. We are accustomed further to regard three points as
being situated on a straight line, if their apparent positions can be made to coincide for observation
with one eye, under suitable choice of our place of observation.
If, in pursuance of our habit of thought, we now supplement the propositions of Euclidean geometry
by the single proposition that two points on a practically rigid body always correspond to the same
distance (line−interval), independently of any changes in position to which we may subject the
body, the propositions of Euclidean geometry then resolve themselves into propositions on the
4
  [ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • angamoss.xlx.pl
  • Drogi uĹźytkowniku!

    W trosce o komfort korzystania z naszego serwisu chcemy dostarczać Ci coraz lepsze usługi. By móc to robić prosimy, abyś wyraził zgodę na dopasowanie treści marketingowych do Twoich zachowań w serwisie. Zgoda ta pozwoli nam częściowo finansować rozwój świadczonych usług.

    Pamiętaj, że dbamy o Twoją prywatność. Nie zwiększamy zakresu naszych uprawnień bez Twojej zgody. Zadbamy również o bezpieczeństwo Twoich danych. Wyrażoną zgodę możesz cofnąć w każdej chwili.

     Tak, zgadzam się na nadanie mi "cookie" i korzystanie z danych przez Administratora Serwisu i jego partnerĂłw w celu dopasowania treści do moich potrzeb. Przeczytałem(am) Politykę prywatności. Rozumiem ją i akceptuję.

     Tak, zgadzam się na przetwarzanie moich danych osobowych przez Administratora Serwisu i jego partnerĂłw w celu personalizowania wyświetlanych mi reklam i dostosowania do mnie prezentowanych treści marketingowych. Przeczytałem(am) Politykę prywatności. Rozumiem ją i akceptuję.

    Wyrażenie powyższych zgód jest dobrowolne i możesz je w dowolnym momencie wycofać poprzez opcję: "Twoje zgody", dostępnej w prawym, dolnym rogu strony lub poprzez usunięcie "cookies" w swojej przeglądarce dla powyżej strony, z tym, że wycofanie zgody nie będzie miało wpływu na zgodność z prawem przetwarzania na podstawie zgody, przed jej wycofaniem.